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(b) General image retrieval. Two examples from the Oxford Building |1”]
dataset.



Fine—grained retrieval

(a) Fine-grained image retrieval. Two examples (“Mallard” and *“Rolls-
Royce Phantom Sedan 2012") from the CUB200-2011 [10] and Cars [ 1]
datasets, respectively.



Abstract

e convolutional neural network models pre— trained for
the ImageNet classification task

e propose the Selective Convolutional Descriptor Aggre-—
gation (SCDA) method



SCDA

An SCDA feature

(a) Inputimage  (b) Convolutional (c) Mask map (d) The largest connected  (¢) Selected (f) Descriptors
activation tensor component of the mask map descriptors aggregation

Figure 2. Pipeline of the proposed SCDA method. An input image with arbitrary resolution is fed into a pre-trained CNN model, and extracted as an order-3
convolution activation tensor. Based on the activation tensor, SCDA firstly selects the deep descriptors by locating the main object in fine-grained images
unsupervisedly. Then, it pools the selected deep descriptors into the SCDA feature as the whole image representation. In the figure, (b)-(e) show the process
of selecting useful deep convolutional descriptors, and the details can be found in Sec. I"™-B1. (This figure is best viewed in color.)



e using only the pre—trained model

e Fach concept is represented by a pattern of activity
distributed over many neurons, and each neuron
participates in the representation of many concepts

e Fig. 3 conveys that not all deep descriptors are useful,
and one single channel contains at best weak semantic
information due to the distributed nature of this
representation.
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e Consequently, we calculate the mean value a of all the
positions in A as the threshold to decide which
positions localize objects

1 ifA;;>a
ﬂf—i,j = R

)

0 otherwise



e we employ Algorithm 1 to collect the largest connected
component of M

Algorithm 1 Finding connected components in binary images

Require: A binary image [,
I: Select one pixel p as the starting point;
2: while True do
3:  Use a flood-fill algorithm to label all the pixels in the con-
nected component containing p;

4 if All the pixels are labeled then

5 Break;

6:  end if

7. Search for the next unlabeled pixel as p;

8: end while

9: return Connectivity of the connected components, and their

corresponding size (pixel numbers).
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Qualitative Evaluation

Because four fine—grained datasets (i.e., CUB200- 2011, Stanford
Dogs, Aircrafts and Cars) supply the ground— truth bounding box
for each image, it is desirable to evaluate the proposed method
for object localization. However, as seen in Fig. 3, the detected
regions are irregularly shaped. 5So, the minimum rectangle
bounding boxes which contain the detected regions are returned as
our object localization predictions.
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Quantitative Evaluation

e The reported metrics are the percentage of whole—object
boxes that are correctly localized with a >50% I0U with
the ground-truth bounding boxes.

e _ Train phase Test phase . - :
Dataset Method BBox | Pars | BBox [ Paris Head | Torso | Whole-object
Strong DPM [3¢] v v v 43.49 | 75.15 -
Part-based R-CNN with BBox [/] v v v 68.19 | 79.82 -
CUB200-2011 Deep LAC [7] v v v 74.00 | 96.00 -
Part-based R-CNN [] v v 61.42 | 70.68 —
Unsupervised object discovery [1Y] - - 69.37
Ours - - 76.79
| Unsupervised object discovery [V] - - 36.23
Stanford Dogs Ours B B 73 86
. Unsupervised object discovery [Y] - - 42.11
Aircrafts Ours - - 94,91
Cars Unsupervised object discovery [Y] - - 93.05
an Ours - - 90.96




Aggregating Convolutional
Descriptors

Table 11
COMPARISON OF DIFFERENT ENCODING OR POOLING APPROACHES FOR
FGIR. THE BEST RESULT OF EACH COLUMN 1S MARKED IN BOLD.

L

]

=
= . . : CUB200-2011 | Stanford Dogs
8 Approach Dimension topl top5 | topl top3
= VLAD (k=2) 1,024 [ 5592 [ 62.51 | 69.28 | 74.43
9 VLAD (k=128) 6.5536 | 55.66 | 62.40 | 68.47 | 75.01
5 Fisher Vector (k=2) 2,048 | 52.04 | 59.19 | 68.37 | 73.74
Fisher Vector (k=128) | 131,072 | 45.44 | 53.10 | 61.40 | 67.63
, avgPool 512 | 5642 | 63.14 | 73.76 | 78.47
(¢) Selected  (f) Descriptors maxPool 512 | 5835 | 64.18 | 70.37 | 75.59
descriptors aggregation avg&maxPool 1,024 [ 59.72 [ 65.79 | 74.86 | 79.24




Result

Table 11
COMPARISON OF FINE-GRAINED IMAGE RETRIEVAL PERFORMANCE. THE BEST RESULT OF EACH COLUMN IS IN BOLD.

Method Dimension CUB200-2011 Stanford Dogs Oxford Flowers Oxford Pets Aircrafts Cars
' topl [ top5 topl | top5 topl | top5 topl | topd topl | top5 topl | tops
SIFT_FV 32,768 525 8.07 12.58 | 16.38 || 30.02 | 36.19 17.50 | 2497 || 30.69 | 37.44 || 19.30 | 24.11
SIFT_FV_gtBBox 32,768 9.98 1429 || 15.86 | 21.15 - - - - 38.70 | 46.87 || 34.47 | 40.34
fcg_im 4,096 39.90 | 48.10 || 66.51 | 72.69 | 5537 | 60.37 82.26 | 86.02 || 28.98 | 35.00 || 19.52 | 25.77
fcg_gtBBox 4,096 47.55 | 55.34 || 70.41 | 76.61 - - - - 34.80 | 41.25 || 30.02 | 3745
feg_predBBox 4,096 45.24 | 53.05 || 68.78 | 74.09 || 57.16 | 62.24 85.55 | 88.47 || 30.42 | 36.50 || 2227 | 29.24
pool . 1,024 57.54 | 63.66 || 69.98 | 7555 | 70.73 | 74.05 85.00 | 87.74 || 47.37 | 53.61 3488 | 41.86
selectFV 2,048 52.04 | 59.19 || 68.37 | 73.74 || 7047 | 73.60 85.04 | 87.09 || 48.69 | 54.68 || 3532 | 41.60
selectVLAD 1,024 5592 | 62.51 69.28 | 7443 || 73.62 | 76.86 85.50 | 87.94 || 5035 | 56.37 || 37.16 | 43.84
SPoC (w/o cen.) 256 3479 | 42.54 || 48.80 | 5595 | 71.36 | 74.55 60.86 | 67.78 || 37.47 | 43.73 || 29.86 | 3623
SPoC (with cen.) 256 39.61 | 47.30 || 48.39 | 55.69 || 6586 | 70.05 64.05 | 71.22 || 42.81 | 4895 || 27.61 | 33.88
CroW 256 53.45 | 59.69 || 62.18 | 68.33 || 73.67 | 76.16 76.34 | 80.10 || 53.17 | 58.62 || 4492 | 51.18
R-MAC 512 52.24 | 59.02 || 59.65 | 66.28 || 76.08 | 78.19 7697 | 81.16 || 48.15 | 54.94 || 46.54 | 52.98
SCDA 1,024 59.72 | 65.79 || 74.86 | 79.24 || 75.13 | 77.70 87.63 | 89.26 || 53.26 | 58.64 || 38.24 | 45.16
SCDA™t 2,048 59.68 | 65.83 || 74.15 | 78.54 || 7598 | 78.49 87.99 | 89.49 || 53.53 | 59.11 38.70 | 45.65
SCDA_flip* 4,096 60.65 | 66,75 || 74.95 | 79.27 || 77.56 | 79.77 88.19 | 89.65 || 54.52 | 59.90 || 40.12 | 46.73




